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Abstract

A fully covariant formulation of kinematics and dynamics of fluid flows and
heat transfer is developed in time-dependent curvilinear coordinate systems.
These moving and deformable reference frames have the same properties of
a fluid motion and they can be successfully applied to a variety of problems
ranging from numerical analysis to theoretical physics. The classical Reynolds
transport theorem, the Euler formula and the acceleration addition theorem are
extended to these general types of coordinates through a generalization of the
convected differentiation concept originally introduced by Oldroyd (1950 Proc.
R. Soc. A 200 523–41). A rigorous formulation of dynamical equations and
conservation laws in curvilinear time-dependent coordinates could be the key
for the construction of variational principles based on the method of constrained
variations.

PACS numbers: 47.10.−g, 47.10.A−, 47.10.ab, 47.10.ad, 02.40.Hw, 02.40.Ky

1. Introduction

This paper concerns the tensorial formulation of kinematics and dynamics of fluid flows and
heat transfer in curvilinear time-dependent coordinate systems. The tensorial formulation
of the basic equations in fluid mechanics is obviously a classical topic (e.g. Aris (1989),
Batchelor (1967)). However, the work in the literature has focused almost exclusively on fixed
coordinate systems, and the extension to moving curvilinear coordinates is rarely discussed.
The fundamental questions we consider are: how do we describe the physical motion of
a fluid from another time evolving flow of coordinates? How do dynamical equations and
conservation laws need to be modified? Does there exist a privileged coordinate flow having
special properties for a given physical fluid flow or a field variable? Obviously, these questions
are not new and researchers have worked on them for decades (e.g., Viviand (1974), Ogawa
and Ishiguro (1987), Rosenfeld and Kwak (1991), Liseikin (1999)).
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However, Luo and Bewley (2004) and Thiffeault (2001) have recently shown that an
elegant answer can be rigorously formulated by using tensor calculus in curvilinear time-
dependent coordinates. These interesting extensions led me to further proceed along this
direction and reformulate classical results from kinematics such as the acceleration addition
theorem and the Reynolds transport theorem under this new perspective.

Dynamical equations and conservation laws expressed in general time-dependent
curvilinear coordinates have many interesting applications ranging from numerical analysis
(Luo and Bewley (2004), Rosenfeld and Kwak (1991), Ogawa and Ishiguro (1987)) to
theoretical physics. For instance, the numerical solution of time-dependent equations
sometimes requires the application of moving grids and corresponding coordinate
transformations, which are dependent of time. The introduction of these time-dependent
transformations enables one to compute an unsteady solution on a fixed uniform grid by the
numerical solution of the transformed set of equations. This can be done both locally, i.e.
element-wise, or globally. From a theoretical point of view, recent developments on variational
methods suggest that a generalized formulation in time-dependent coordinates could be the
key for determining variational principles based on the method of constrained variations (e.g.,
Bretherton (1970), Larsson (2003), Holm et al (1998)).

There is in fact a very strong connection between formulating the equations of motion of
a physical system in time-dependent curvilinear coordinates and the existence of a variational
principle for such set of equations. This connection has been clearly pointed out a long time
ago by Herivel (1955) in the context of perfect fluid flows. He recognized that a very simple
variational principle for the Euler equations can be formulated if Lagrangian coordinates are
considered. Historically, the extension of this principle to fixed coordinates has led to many
technical difficulties (e.g. Drobot and Rybarski (1958), Serrin (1959), Eckart (1960), Seliger
and Whitham (1968), Finlayson (1972), Mobbs (1982), Salmon (1988), Morrison (1998)),
mostly due to the appearance of velocity potentials whose physical significance is somehow
obscure. To overcome these problems Bretherton (1970) first proposed a hybrid Hamilton’s
principle for perfect fluids based on constrained variations (see, e.g., Larsson (1996, 2003),
Wilhelm (1979) for recent developments and applications). The key idea is to compute a
field variation induced by a small perturbation of particle paths in convected coordinates
and transform it back to fixed coordinates1. As clearly seen, this method basically relies on
a functional perturbation theory which is built upon time-dependent curvilinear coordinate
systems. The fundamental connection between the form of the equations and the existence
of a variational principle has also been recognized by Tonti (1984) (see also Tonti (1969a,
1969b), Vainberg (1964), Finlayson (1972), Filippov (1989)) under a different perspective.

In order to obtain the equations of fluid mechanics in curvilinear time-dependent
coordinate systems, Luo and Bewley (2004) have recently proposed an extension of the
Reynolds transport theorem which has been left without a rigorous proof. In this paper,
we provide such a proof through a generalization of the convected differentiation concept
originally introduced by Oldroyd (1950).

This paper is organized as follows. In section 2 we introduce basic facts regarding the
kinematical description of fluid flows in time-dependent curvilinear coordinates. In section 3
we consider the concept of intrinsic differentiation along a curve and we extend the proof
of Luo and Bewley (2004) to tensors up to order two. In section 4 we discuss the Oldroyd
(1950) convected derivative with respect to time and obtain its generalized expression in time-
dependent coordinates. Previously unobserved connections between convected and intrinsic

1 Today the method of constrained variations has a place within abstract mathematical theory in terms of Lie algebras
with representations (e.g. Holm et al (1998)).
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derivatives are reported as well. Section 5 is devoted to the tensorial formulation of the
acceleration addition theorem. In section 6 we consider the Reynolds transport theorem and
we provide a new proof based on the concept of convected differentiation. Examples of
application are reported in section 7, where the equations of mass and energy conservation
as well as momentum transport are determined. We also include a brief appendix treating
the temporal differentiation of the metric tensor determinant in convected coordinates. We
will extensively use tensor calculus throughout the entire paper. For excellent treatments see
Weinberg (1972), Aris (1989) and Lovelock and Rund (1989).

2. Kinematics of fluid motion

We begin this section by emphasizing the fundamental difference which occurs between a
coordinate system and an observer as these two concepts are frequently wrongly interchanged
in tensor analysis. Let us briefly describe where the misunderstanding is. Consider a uniform
and stationary fluid flow along the x-axis of a fixed Cartesian and orthogonal coordinate
system. Let vx be the velocity component along x. Let us also consider another Cartesian
coordinate system whose axes are parallel to the aforementioned reference frame and whose
motion proceeds along x exactly with velocity vx . We formulate the following question: what
are the fluid-flow velocity components with respect to the moving system? The answer is:
the velocity components are exactly the same in both coordinate systems. This can be easily
seen by examining the tensorial transformation rule for the contravariant velocity field. The
reader might be skeptical about this result and rightly suggest that in the moving reference
frame the fluid is observed to be in a no-motion state. These kind of statements presuppose
that the velocity of the moving system is somehow subtracted from the flow velocity and
this is obtained if a change of observer is performed. This is equivalent to evaluating the
flow velocity through a material differentiation along fluid element paths as observed from
moving coordinates. In other words, the tensorial transformation rule for the velocity field
and the material differentiation along fluid element trajectories relative to moving coordinates
lead to different results. The whole apparatus of tensor calculus, however, deals with the
transformation of tensors corresponding to coordinate transformations, and when such a
transformation is performed there is no change of observer.

A classical example of time-dependent coordinates is a rigidly rotating Cartesian system,
widely used in fluid mechanics for the study of geostrophic flows or flows between spinning
coaxial cylinders. A generalization of the rigid reference frame concept naturally yields to
time-dependent curvilinear coordinates whose motion in space resembles in toto a physical
fluid flow. In formulating the general relativity theory Einstein (1966) called these types of
coordinates ‘molluscs of reference’ to emphasize the fact that their metric relations depend
on space as well on time. The fluid mechanicist is definitely familiar with a particular type of
such a coordinate flow, i.e. the Lagrangian (material or convected) coordinates. In this case
physical fluid flow and coordinate flow basically coincide.

2.1. Description of trajectories, velocity and acceleration

Fluid flow is an intuitive physical notion which is represented mathematically by a continuous
transformation of three-dimensional Euclidean space into itself. In order to set up this
transformation we consider a fluid particle labeled by ξ and represent its trajectory in fixed
Cartesian coordinates as x̂(ξ, t). The parameter ‘t’ is identified with the time while we will
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refer to ξ as material coordinates. The expression x̂ (ξ, t) actually determines an ensemble of
paths, one for each specific choice of ξ.2

Now we consider a transformation from the Cartesian system x to another curvilinear
system η. We allow this mapping to be time dependent and we write it as η̂ (x, t). This
transformation has exactly the same properties of the fluid motion x̂ (ξ, t), i.e. it can be
basically considered as another flow of particles η whose motion in Cartesian coordinates
is readily obtained through an inversion of η̂ (x, t). The next question is: how does this
coordinate flow see the trajectories of the physical particles? To answer this question we
simply bind the x dependence of η̂ (x, t) to x̂ (ξ, t), obtaining η̂ (x̂ (ξ, t) , t).

Using the same notation adopted by Luo and Bewley (2004), the relative velocity field is
easily obtained as material derivative (i.e. derivative with respect to time keeping ξ constant)
of η̂ (x̂ (ξ, t) , t), i.e.

d̂ηj

dt
= ∂η̂j

∂t
+

∂η̂j

∂xk

d̂xk

dt
= −Uj + uj , (2.1)

where Uj are the velocity components of the coordinate flow while uj are the velocity
components of the physical flow. Both Uj and uj are tensorial components3 relative to
moving coordinates η. Equation (2.1) basically states the Galilean velocity addition theorem:
the velocity of a particle relative to a moving coordinate system equals its absolute velocity
minus the velocity of the reference system.

An additional material derivative of the relative velocity uk
R := uk − Uk gives the relative

acceleration

d2η̂k

dt2
= ∂uk

R

∂t
+

∂uk
R

∂ηj
u

j

R. (2.2)

It is evident that (2.2) in general is a non-tensorial quantity. To see this we simply substitute the
partial derivative ∂uk

R

/
∂ηj with its covariant representation (�k

nj denotes the affine connection)

∂uk
R

∂ηj
= uk

R;j − �k
nju

n
R, (2.3)

to obtain

d2η̂k

dt2
= ∂uk

R

∂t
+ uk

R;ju
j

R − �k
nju

j

Run
R. (2.4)

Equation (2.4) ensures covariance of the relative acceleration only for a restricted class of
coordinate flows having vanishing affine connection coefficients �k

nj . Cartesian and orthogonal
reference frames in rigid motion belong to this class. We postpone the formulation of the
acceleration addition theorem in its fully covariant form to section 5 after the concepts of
intrinsic as well as convected differentiation are introduced.

2 As is well known, material coordinates have different interpretations. They can be seen as a curvilinear mesh
which is somehow glued to the physical flow and evolves with it. Another common and widely used interpretation
is that ξ are coordinates of the fluid elements at a certain reference time t0. In the first case, attention is focused
more on dynamical aspects of the flow while in the second case more attention is devoted to the methodology which
assigns a label to a fluid element, specifically ξ = x̂ (ξ, t0). It is assumed that distinct physical particles remain
distinct throughout the entire motion, i.e. two particles cannot collapse in one particle and one particle cannot split into
two particles. This is equivalent to assuming that the fluid matter cannot detach or compenetrate during its motion.
It is well known that this requirement restricts the class of transformations x̂ (ξ, t) to ones possessing continuous
derivatives up to the third order in all variables (except possibly at certain singular surfaces, curves or points).
3 For an illuminating discussion on the fundamental difference between tensorial and physical components of vectors
and tensors see Truesdell (1953) or Aris (1989).
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3. Intrinsic differentiation

In this section we introduce the concept of intrinsic differentiation of tensors along particle
paths in time-dependent curvilinear coordinate systems. Let us briefly clarify why we need to
consider such an operator and what its meaning is. It is well known from tensor analysis that
a simple material differentiation of a tensorial field along a particle path produces a certain
number of terms which are responsible for a non-tensorial behavior of the derived quantity.
What does this mean? Consider as an example two different curvilinear coordinate systems
and a particle path conveniently expressed in both of them. If we compute a material derivative
of the particle velocity in both coordinate systems and we transform these results into a third
coordinate system we will get two different acceleration vectors, as if the trajectory of the
particle was not unique. This happens because the material derivative of a vector in general is
not a tensor.

The intrinsic derivative operator is constructed so as to guarantee covariance (i.e. the
independence from the choice of the coordinate system) of a temporal differentiation along
particle paths relatively to all possible coordinate systems. In classical tensor analysis
covariance is usually required with respect to fixed curvilinear coordinates. Within this
framework the intrinsic derivative of a contravariant vector Ai is computed as (e.g. Aris
(1989))

δAi

δt
= ∂Ai

∂t
+ Ai

;ju
j , (3.1)

where Ai
;j denotes a covariant differentiation while ui are particle velocity components. In

ordinary fluid mechanics, intrinsic derivatives in fixed curvilinear coordinates are also widely
known as convective derivatives4. This is due to the so-called convective rate of change
(Batchelor (1967), p 73), identified by the second term appearing in (3.1).

The intrinsic derivative of a contravariant vector field in time-dependent coordinate
systems has recently been obtained by Luo and Bewley (2004) in the context of Navier–
Stokes equations representation. In the following subsection we extend the theory to second
order tensors.

3.1. Intrinsic derivative of second order tensors

Following Luo and Bewley (2004), we use the quotient rule (e.g. Aris (1989)) to establish a
tensorial quantity which defines the temporal variation of second order tensors along particle
paths in general time-dependent curvilinear coordinates. To this end we construct the scalar
field

E = Ai
jB

jCi, (3.2)

4 We remark that the term ‘convective derivative’ is often used to denote also another type of derivative, namely the
Oldroyd derivative (Oldroyd (1950)), which is discussed in the subsequent section 4. This naming has been adopted
by Thiffeault (2001) section 5.1, Aris (1989) p 185, Gatski and Lumley (1978) p 626, Billington and Tate (1981)
p 61, Rappaz et al (2001) p 306, Gatski (2001) p 26. Other authors refer to the Oldroyd derivative as ‘convected time
derivative’. The latter definition seems to be more popular, and maybe indicates more precisely the physical meaning
of such a derivative. Oldroyd himself uses the term ‘convected differentiation with respect to time’ (Oldroyd (1950),
p 530). Therefore, in order to avoid confusion, we shall reserve the term ‘convected derivative’ to denote the Oldroyd
derivative and we shall equivalently call (3.1) the intrinsic derivative in fixed curvilinear coordinates or, more simply,
the convective derivative.
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where Bj and Ci are parallel contravariant and covariant vectors, respectively. It is well
known that the concept of parallelism for vectors defined along arbitrary paths in curvilinear
coordinates leads to the following requirements:

dBj

dt
= − d

dt

(
∂x̂k

∂ηm

)
∂η̂j

∂xk
Bm, (3.3)

dCi

dt
= d

dt

(
∂x̂k

∂ηi

)
∂η̂m

∂xk
Cm. (3.4)

We differentiate (3.2) with respect to time following the physical particle ξ:

dE

dt
= dAi

k

dt
CiB

k + Ai
k

dCi

dt
Bk + Ai

kCi

dBk

dt
(3.5)

and take into account the parallelism relations (3.3) and (3.4) to obtain

dE

dt
=

[
∂Ai

k

∂t
+

∂Ai
k

∂ηm

d̂ηm

dt

]
CiB

k +
d

dt

(
∂x̂j

∂ηi

)
∂η̂m

∂xj
Ai

kCmBk

︸ ︷︷ ︸
m↔i

− d

dt

(
∂x̂j

∂ηm

)
∂η̂k

∂xj
Ai

kCiB
m

︸ ︷︷ ︸
m↔k

.

An interchange of indices as illustrated above yields

dE

dt
=

[
∂Ai

k

∂t
+

∂Ai
k

∂ηm

d̂ηm

dt
+

d

dt

(
∂x̂j

∂ηm

)
∂η̂i

∂xj
Am

k − d

dt

(
∂x̂j

∂ηk

)
∂η̂m

∂xj
Ai

m

]
CiB

k. (3.6)

The quotient rule tells us that the quantity within brackets must be a second order mixed tensor,
which we define to be δAi

k

/
δt and call the intrinsic derivative of Ai

k along the trajectory of the
physical particle ξ in coordinates η. Now we express such a tensor in a manifestly covariant
form. To this end we note that

d

dt

(
∂x̂j

∂ηm

)
= ∂

∂t

(
∂x̂j

∂ηm

)
+

∂

∂ηn

(
∂x̂j

∂ηm

)
d̂ηn

dt

= ∂U
j

∂ηm
+

∂2x̂j

∂ηn∂ηm

d̂ηn

dt

= ∂

∂ηm

(
∂x̂j

∂ηn
Un

)
+

∂2x̂j

∂ηn∂ηm

d̂ηn

dt

= ∂2x̂j

∂ηm∂ηn
Un +

∂x̂j

∂ηn

∂Un

∂ηm
+

∂2x̂j

∂ηn∂ηm

d̂ηn

dt
,

where U
j

are Cartesian velocity components of the coordinate flow. A multiplication of the
latter expression by ∂η̂i/∂xj gives

d

dt

(
∂x̂j

∂ηm

)
∂η̂i

∂xj
= ∂η̂i

∂xj

∂2x̂j

∂ηm∂ηn︸ ︷︷ ︸
�i

nm

Un +
∂η̂i

∂xj

∂x̂j

∂ηn︸ ︷︷ ︸
δi
n

∂Un

∂ηm
+

∂η̂i

∂xj

∂2x̂j

∂ηn∂ηm︸ ︷︷ ︸
�i

nm

d̂ηn

dt

= ∂Ui

∂ηm
+ �i

nmUn + �i
nm

d̂ηn

dt

= Ui
;m + �i

nm

d̂ηn

dt
. (3.7)
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Now we substitute (3.7) into (3.6)

δAi
k

δt
= ∂Ai

k

∂t
+

∂Ai
k

∂ηm

d̂ηm

dt
+

(
Ui

;m + �i
nm

d̂ηn

dt

)
Am

k −
(

Um
;k + �m

kn

d̂ηn

dt

)
Ai

m

and collect all terms multiplying d̂ηj/dt = uj −Uj . We obtain the following final expression:

δAi
k

δt
= ∂Ai

k

∂t
+ Ai

k;m(um − Um) + Am
k Ui

;m − Ai
mUm

;k . (3.8)

It is easy to repeat the proof for a fully covariant or contravariant second order tensor

δAik

δt
= ∂Aik

∂t
+ Aik;m(um − Um) − AimUm

;k − AmkU
m
;i , (3.9)

δAik

δt
= ∂Aik

∂t
+ Aik

;m(um − Um) + AimUk
;m + AmkUi

;m. (3.10)

It is also easy to determine the following expressions for the intrinsic derivative of scalars,
contravariant (Luo and Bewley (2004)) and covariant vector fields:

δF

δt
= ∂F

∂t
+ F;k(uk − Uk), (3.11)

δAi

δt
= ∂Ai

∂t
+ Ai

;k(u
k − Uk) + AkUi

;k, (3.12)

δAi

δt
= ∂Ai

∂t
+ Ai;k(uk − Uk) − AkU

k
;i . (3.13)

3.2. Intrinsic derivative of the metric tensor

It is well known that the covariant derivative of the metric tensor vanishes identically (e.g.,
Weinberg (1972), Aris (1989)), i.e. gij ;m = 0. Therefore, according to (3.9), the intrinsic
derivative of gij is

δgij

δt
= ∂gij

∂t
− gimUm

;j − gmjU
m
;i . (3.14)

If the coordinate system is fixed (i.e., Ui = 0 and gim is not a function of t) we obtain
δgik/δt = 0. The covariance of the expression (3.14) guarantees that the same conclusion
persists also if time-dependent curvilinear coordinates are considered. We verify this assertion
by a direct calculation. As easily seen

∂gij

∂t
= ∂

∂t

(
∂x̂p

∂ηi

∂x̂p

∂ηj

)

= ∂

∂t

(
∂x̂p

∂ηi

)
∂x̂p

∂ηj
+

∂x̂p

∂ηi

∂

∂t

(
∂x̂p

∂ηj

)

= ∂U
p

∂ηi

∂x̂p

∂ηj
+

∂x̂p

∂ηi

∂U
p

∂ηj

= ∂Um

∂ηi

∂x̂p

∂ηm

∂x̂p

∂ηj︸ ︷︷ ︸
gmj

+ Un ∂2x̂p

∂ηn∂ηi

∂x̂p

∂ηj︸ ︷︷ ︸
[ni,j ]

+
∂Um

∂ηi

∂x̂p

∂ηm

∂x̂p

∂ηi︸ ︷︷ ︸
gmi

+ Un ∂2x̂p

∂ηn∂ηj

∂x̂p

∂ηi︸ ︷︷ ︸
[nj,i]

= ∂Um

∂ηi
gmj + Un [ni, j ] +

∂Um

∂ηj
gmi + Un [nj, i] , (3.15)

7
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where [mi, j ] denotes the Christoffel symbol of the first kind and U
p

are Cartesian velocity
components of the coordinate flow. Now, using the well-known identity

[ni, j ] = �m
nigmj , (3.16)

we re-write (3.15) as

∂gij

∂t
= gmj

(
∂Um

∂ηi
+ Un�m

ni

)
+ gmi

(
∂Um

∂ηj
+ Un�m

nj

)
= gmjU

m
;i + gmiU

m
;j . (3.17)

This means that, independently from the status of motion of the curvilinear coordinate system,
the metric tensor is always parallel transported5, i.e.

δgij

δt
= 0. (3.18)

4. Convected differentiation

Convected time derivatives were established a long time ago by Oldroyd (1950) for the purpose
of rigorously characterizing rheological properties of a moving continuum. These types of
derivatives (here denoted by dc/dt) basically state the general covariance of a material variation
of a tensor along a fluid trajectory in convected coordinates. In its original formulation Oldroyd
developed these concepts in fixed curvilinear systems (see also Scriven (1960), Aris (1989)).
In this section we extend this classical theory to include the possibility of time-dependent
coordinate flows. To this end, we consider a second order mixed tensor αi

j (ξ, t) in material
coordinates and we set down the following transformation rule:

∂η̂m

∂ξ i
αi

j = ∂η̂n

∂ξ j
Am

n , (4.1)

where Am
n (η, t) are components of αi

j in an arbitrary time-dependent curvilinear system. We
differentiate both sides of (4.1) with respect to time keeping ξ constant (i.e. following the
physical particle ξ)

d

dt

(
∂η̂m

∂ξ i

)
αi

j +
∂η̂m

∂ξ i

dαi
j

dt
= d

dt

(
∂η̂n

∂ξ j

)
Am

n +
∂η̂n

∂ξ j

dAm
n

dt
. (4.2)

From (2.1), it is easy to obtain that

d

dt

(
∂η̂m

∂ξi

)
=

(
−∂Um

∂ηq
+

∂um

∂ηq

)
∂ηq

∂ξ i
, (4.3)

recalling that d/dt denotes temporal differentiation at ξ constant. An alternative derivation of
equation (4.3) is presented in appendix B. A substitution of (4.3) into (4.2) yields(

−∂Um

∂ηq
+

∂um

∂ηq

)
∂ηq

∂ξ i
αi

j +
∂η̂m

∂ξ i

dαi
j

dt
=

(
−∂Un

∂ηq
+

∂un

∂ηq

)
∂ηq

∂ξ j
Am

n +
∂η̂n

∂ξ j

dAm
n

dt
. (4.4)

Multiplying (4.4) by ∂ξ̂ j /∂ηr and rearranging all terms give

dcA
m
r

dt
:= ∂Am

r

∂t
+

∂Am
r

∂ηj
(uj − Uj) − Aj

r

(
∂um

∂ηj
− ∂Um

∂ηj

)
+ Am

j

(
∂uj

∂ηr
− ∂Uj

∂ηr

)
. (4.5)

5 For a rigorous definition of parallel transport of a vector or a tensor along a particle path see Aris (1989) or Weinberg
(1972).

8



J. Phys. A: Math. Theor. 42 (2009) 125203 D Venturi

Equation (4.5) is the generalization of the convected derivative introduced by Oldroyd (1950)
in the context of fixed curvilinear coordinates. It is easy to check that (4.4) is covariant with
respect to time-dependent transformations. To see this we simply substitute

∂Am
r

∂ηj
= Am

r;j − �m
jpAp

r + �
p

rjA
m
p , (4.6)

∂um

∂ηj
= um

;j − �m
pju

p, (4.7)

∂Um

∂ηj
= Um

;j − �m
pjU

p, (4.8)

into (4.5) to obtain the final result

dcA
m
r

dt
= ∂Am

r

∂t
+ Am

r;j (u
j − Uj) + Am

j (uj − Uj);r − Aj
r (u

m − Um);j . (4.9)

If the curvilinear coordinate system is fixed, i.e. Um = 0, we obtain the classical Oldroyd
derivative. Note also that if the curvilinear coordinate system is in motion with the fluid, i.e.
Um = um, then (4.9) degenerates in a simple partial derivative with respect to time. It is
easy to obtain a fully covariant expression for other types of tensors if we add one term like
Am

j (uj −Uj);r for every covariant index and one like −A
j
r (u

m −Um);j for every contravariant
index. The application of this simple rule leads to the following convected derivatives:

dcAmr

dt
= ∂Amr

∂t
+ Amr;j (uj − Uj) + Amj (u

j − Uj);r + Ajr(u
j − Uj);m, (4.10)

dcA
mr

dt
= ∂Amr

∂t
+ Amr

;j (uj − Uj) − Amj (ur − Ur);j − Ajr(um − Um);j . (4.11)

4.1. Connections between intrinsic and convected derivatives

A straightforward comparison between the equations obtained in sections 3 and 4 allows us
to establish general relations between the convected and the intrinsic derivatives of scalars,
vectors and tensors. For instance,

dc F

dt
= δF

δt
. (4.12)

Analogously for vector and tensor fields

dcB
i

dt
= δBi

δt
− Bmui

;m, (4.13)

dcBi

dt
= δBi

δt
+ Bmum

;i , (4.14)

dcA
ij

dt
= δAij

δt
− Aimu

j

;m − Amjui
;m, (4.15)

dcAij

dt
= δAij

δt
+ Aimum

;j + Amju
m
;i . (4.16)

A simple application of (4.16) shows that the convected derivative of the metric tensor is

dcgij

dt
= gimum

;j + gmju
m
;i . (4.17)
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In fact we have seen in section 3.2 that the intrinsic derivative of gij vanishes identically. This
basically shows that the generalized convected derivative is not compatible6. The quantity on
the right-hand side of (4.17) is twice the velocity deformation tensor

eij = 1
2 (ui;j + uj ;i ). (4.18)

Note that the convected derivative of the metric tensor does not depend on the velocity of
the coordinate flow, since it represents the rate of strain of a fluid element which is obviously
independent from the status of motion of the coordinate system. Rheological properties of
materials which are functions of this local rate of strain satisfy the principle of material
indifference, i.e. the response of the material is the same for all observers. Notable examples
are the Stokesian fluid and the linear and isotropic Newtonian fluid, discussed in section 7.1.

5. The acceleration addition theorem

As a first application of the theoretical apparatus developed in the previous sections we consider
the acceleration addition theorem for a fluid flow as described from time-dependent curvilinear
coordinates. This is equivalent to considering the following question: if we observe a physical
flow from another flow of coordinates what is the expression of the inertial forces? The
answer has been well known for centuries if rectangular reference frames in rigid motion
are considered. Here we obtain an elegant generalization of this classical result by using the
intrinsic derivative concept developed in section 3. To this end we recall that for an arbitrary
contravariant vector Ai :

∂Ak

∂t
+ Ak

;ju
j

R = δAk

δt
− ApUk

;p. (5.1)

By examining (2.4) under this new perspective it is easy to obtain
(
u

j

R = uj − Uj
)
:

d2η̂k

dt2
= δuk

δt
− δUk

δt
− u

p

RUk
;p − �k

nju
j

Run
R, (5.2)

which is equivalent to

δuk

δt
= δUk

δt
+

duk
R

dt
+ �k

nju
j

Run
R + u

p

RUk
;p. (5.3)

Equation (5.3) represents the acceleration addition theorem in its fully covariant form7. It is
easy to show that this result includes the classical acceleration addition theorem for rectangular
reference frames in rigid motion (Batchelor (1967), section 3) as a subcase. Moreover, as
easily seen from (5.3), the relative acceleration duk

R

/
dt in general is not a tensor, due to the

presence of �k
nju

j

Run
R . The difference between duk

R

/
dt and δuk

R

/
δt has already been clearly

pointed out in the introduction of section 3.

6 As pointed out by Thiffeault (2001), a compatible operator vanishes when acting on the metric.
7 Note that an intrinsic differentiation of ui = Ui + ui

R immediately leads to

δuk

δt
= δUk

δt
+

δuk
R

δt
, (5.4)

which coincides with (5.3).
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6. The Reynolds transport theorem

We consider a fluid flow described from an arbitrary time-dependent flow of coordinates. We
are interested in the quantity

d

dt

∫
V (t)

F
√

g dη1 dη2 dη3, (6.1)

where F (η, t) denotes a scalar field, V (t) is a material volume convected by the fluid and
g (η, t) is the time-dependent determinant of the metric tensor. Expression (6.1) can be easily
obtained from standard calculus by considering a change of variables from Cartesian to time-
dependent curvilinear coordinates and noting that the modulus of the Jacobian determinant for
this transformation is exactly

√
g. In the very special case where the coordinate flow and the

fluid flow coincide, the domain of the integral (6.1) loses its time dependence and this allows
us to write

d

dt

∫
V (t)

F
√

g dη1 dη2 dη3 =
∫

V0

d

dt
(F′√γ ) dξ 1 dξ 2 dξ 3

=
∫

V0

(
dF′

dt

√
γ + F′ 1

2
√

γ

dγ

dt

)
dξ 1 dξ 2 dξ 3, (6.2)

where γ (ξ, t) denotes the time-dependent metric tensor determinant in material (convected)
coordinates. The analytical expression of F changes as well when we perform the coordinate
transformation8. In appendix A we obtain that

dγ

dt
= γ γ ij dγij

dt
. (6.3)

A substitution of (6.3) into (6.2) yields

d

dt

∫
V (t)

F
√

g dη1 dη2 dη3 =
∫

V0

(
dF′

dt
+ F′ 1

2
γ ij dγij

dt

) √
γ dξ 1 dξ 2 dξ 3.

Now we need to transform the right-hand side of this expression back to the moving
curvilinear system η. The scalar field γ ij dγij /dt transforms according to the product of two
second order tensors: γ ij and dγij /dt . To obtain the expression of this scalar in coordinates
η we first transform singularly both γ ij and dγij /dt , then we perform the direct product and
contract the indices. The components of dγij /dt in coordinates η are generalized convected
derivatives (see section 4), which we have denoted by dcgij /dt . According to (4.17) we have
the Euler formula

1

2
gij dcgij

dt
= 1

2
gij

(
gimum

;j + gmju
m
;i
)

= um
;m (6.4)

and therefore
d

dt

∫
V (t)

F
√

g dη1 dη2 dη3 =
∫

V (t)

(
dcF

dt
+

1

2
Fgij dcgij

dt

) √
g dη1 dη2 dη3

=
∫

V (t)

(
δF

δt
+ Fum

;m

)√
g dη1 dη2 dη3, (6.5)

where we have also used the identity (4.12). This completes the proof of the Reynolds transport
theorem in curvilinear time-dependent coordinates. The final formula (6.5) has been used by
Luo and Bewley (2004) to obtain the contravariant form of the Navier–Stokes equations in
curvilinear time-dependent coordinates.

8 As an example consider F(x, y) = x2 +y2 in Cartesian coordinates (x, y). When we transform to polar coordinates,
F(x, y) becomes F′ (r, θ) = r2.
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7. Mass conservation and momentum transport

We consider the fluid mass density ρ (η, t) as expressed in curvilinear time-dependent
coordinates. The total mass of a material volume convected by the fluid is a constant and
therefore by applying the Reynolds transport theorem we obtain

d

dt

∫
V (t)

ρ
√

g dη1 dη2 dη3 =
∫

V (t)

(
δρ

δt
+ ρum

;m

)√
g dη1 dη2 dη3 = 0. (7.1)

This is true for an arbitrary V (t) and hence (7.1) leads to

δρ

δt
+ ρum

;m = 0, (7.2)

which can be equivalently written as

∂ρ

∂t
+ (ρum);m − ∂ρ

∂ηk
Uk = 0. (7.3)

This is the equation of continuity expressed in time-dependent curvilinear coordinates. Now
we consider the scalar field obtained by a direct product of the contravariant momentum
density ρui and a parallel covariant vector field li , i.e. we consider the components of the
momentum density projected along li . A trivial application of the transport theorem in this
case leads to the following momentum transport equation:

d

dt

∫
V (t)

ρuili
√

g dη1 dη2 dη3 =
∫

V (t)

ρ
δui

δt
li
√

g dη1 dη2 dη3. (7.4)

Using similar arguments one can easily reformulate the whole dynamical theory for fluid flows
and heat transfer in time-dependent coordinate systems from an integral point of view. For
instance it is easy to prove that the momentum conservation leads to the following Cauchy’s
equation of motion:

ρ
δui

δt
= ρf i + T

ij

;j , (7.5)

where T ij is the stress tensor and f i is the body force vector. Analogously, the intrinsic form
of the first law of thermodynamics applied to a fluid element in arbitrary motion leads to the
following Fourier equation:

ρcp

δT

δt
= D − qm

;m + qg + βT
δp

δt
, (7.6)

where T denotes the temperature, ρ is the density, cp is the specific heat at constant pressure, D
is the viscous dissipation, qm are the contravariant components of the heat flux, qg is a source
term, p is the thermodynamic pressure and β is the isobaric compressibility coefficient.

7.1. Newtonian fluids

The stress tensor for a linear and isotropic Newtonian fluid in convected coordinates is (e.g.
Aris (1989), p 189)

�ij = −pγ ij + λγ ij γ pqεpq + μ(γ ipγ jq + γ iqγ jp)εpq

= −pγ ij +
1

2
λγ ij γ pq dγpq

dt
+ μγ ipγ jq dγpq

dt
. (7.7)

12
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Transforming this back to curvilinear time-dependent coordinates we obtain

T ij = −pgij +
1

2
λgij gpq dcgpq

dt︸ ︷︷ ︸
2um

;m

+μgipgjq dcgpq

dt

= −pgij + λgijum
;m + μgipgjq(up;q + uq;p). (7.8)

As easily seen the stress tensor components do not depend on the velocity of the coordinate
system η.9 The divergence of T ij is easily computed as

T
ij

;j = (−p;j + λum
;mj

)
gij + μgipgjq(up;qj + uq;pj )

= (−p;j + (λ + μ)um
;mj

)
gij + μgjqui

;jq . (7.9)

A substitution of this expression into (7.5) leads to the contravariant form of the Navier–Stokes
equations in time-dependent curvilinear coordinates (e.g. Luo and Bewley (2004)).

8. Summary

We have established a fully covariant formulation of kinematics and dynamics of fluid flows
in time-dependent curvilinear coordinate systems. These moving and deformable reference
frames have the same properties of a fluid motion and can be successfully used both for
numerical and theoretical investigations. We have extended the Reynolds transport theorem,
the Euler formula as well as the acceleration addition theorem to these general types of
coordinates by generalizing the convected differentiation concept originally introduced by
Oldroyd (1950). In this context, previously unobserved connections between convected
and intrinsic derivatives are reported. A rigorous formulation of dynamical equations
and conservation laws in curvilinear time-dependent coordinates could be the key for the
construction of variational principles based on the method of constrained variations. In fact,
classical existence conditions for a potential of a nonlinear operator (e.g. Vainberg (1964),
Filippov (1989), Finlayson (1972), Tonti (1984), Tonti (1969a), Tonti (1969b)) can be recast
into the search for a symmetrizing coordinate flow whose physical properties need to be
carefully investigated.

Appendix A. Material derivative of the metric tensor determinant in convected

coordinates

Consider a curvilinear coordinate system which is convected by a fluid flow. Let γij be the
metric tensor associated with this coordinate system. If we denote by Γ ij the co-factor of the
matrix element γij , we can easily write the determinant of the metric tensor γij as

γ := det(γij ) =
∑

j

γijΓ
ij ∀ i, (no sum over i). (A.1)

If we also sum over i we find

3γ = γijΓ
ij (tridimensional case), (A.2)

2γ = γijΓ
ij (bidimensional case). (A.3)

For the tridimensional case the co-factor of the element γij has tensorial expansion

Γ ij = 1
2εimnεjpqγmpγnq, (A.4)

9 This is known as the principle of material indifference: the response of the material is the same for all observers.
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where εimn is the permutation symbol, i.e. the Levi–Civita tensorial density. A substitution of
(A.4) into (A.2) leads to

γ = 1
6εimnεjpqγij γmpγnq. (A.5)

By taking the material derivative of (A.5) we find

dγ

dt
= 1

6
εimnεjpq

(
dγij

dt
γmpγnq + γij

dγmp

dt
γnq + γij γmp

dγnq

dt

)
. (A.6)

An interchange of the summation indices in the second term (m ↔ i, p ↔ j) as well as in
the third term (n ↔ i, q ↔ j) yields10

dγ

dt
= 1

6
εimnεjpq3

dγij

dt
γmpγnq = 1

2
εimnεjpqγmpγnq︸ ︷︷ ︸

Γ ij

dγij

dt
. (A.7)

In the sense of matrices, the contravariant form of the metric tensor γ ij is the inverse of γij ,
i.e. γikγ

kj = δ
j

i . From the inversion theory of square matrices it follows that

γ ij = Γ ij

γ
⇒ Γ ij = γ γ ij . (A.8)

Substituting this expression back to (A.7) yields the elegant formula

dγ

dt
= γ γ ij dγij

dt
. (A.9)

We remark that the quantity γ ij dγij /dt is a scalar because the material derivative of any tensor
in convected coordinates is a tensor (see section 4).

Appendix B. An alternative derivation of equation (4.3)

In this section we provide an alternative derivation of equation (4.3). To this end we note that

d

dt

(
∂η̂m

∂ξ i

)
= d

dt

(
∂η̂m

∂xl

)
∂x̂l

∂ξ i
+

∂η̂m

∂xl

d

dt

(
∂x̂l

∂ξ i

)
. (B.1)

The first term on the right-hand side is

d

dt

(
∂η̂m

∂xl

)
= ∂

∂t

(
∂η̂m

∂xl

)
+

∂

∂xq

(
∂η̂m

∂xl

)

= −∂Um

∂xl
+

∂2η̂m

∂xl∂xq

d̂xq

dt

= −∂Um

∂ηq

∂η̂q

∂xl
+

∂2η̂m

∂xl∂xq
uq

= −∂Um

∂ηq

∂η̂q

∂xl
+

∂2η̂m

∂xl∂xq

∂x̂q

∂ηn
un. (B.2)

The second term on the right-hand side of the latter expression has something to do with the
affine connection. In fact if we differentiate the identity

∂η̂m

∂xk

∂x̂k

∂ηq
= δm

q (B.3)

10 The aforementioned interchanges generate sign inversions in εimn and εjpq which neutralize each other in the sense
that εimnεjpq = (−εmin)(−εpjq ) = εminεpjq .
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with respect to xj we obtain (e.g. Lovelock and Rund (1989) p 70, remark 5)

∂2η̂m

∂xk∂xj

∂x̂k

∂ηq
+

∂η̂m

∂xk

∂2x̂k

∂ηq∂ηl︸ ︷︷ ︸
�m

ql

∂η̂l

∂xj
= 0, (B.4)

that is

∂2η̂m

∂xk∂xj

∂x̂k

∂ηq
= −�m

ql

∂η̂l

∂xj
. (B.5)

Substituting this result back to (B.2), multiplied by ∂x̂l/∂ξ i yields

d

dt

(
∂η̂m

∂xk

)
∂x̂l

∂ξ i
= −∂Um

∂ηq

∂η̂q

∂xl

∂x̂l

∂ξ i
− �m

npun ∂η̂p

∂xl

∂x̂l

∂ηr

∂η̂r

∂ξ i

= −∂Um

∂ηq

∂η̂q

∂ξ i
− �m

nqu
n ∂η̂q

∂ξ i

=
(

−∂Um

∂ηq
− �m

nqu
n

)
∂η̂q

∂ξ i
. (B.6)

Now we consider the second term on the right-hand side of (B.1):

∂η̂m

∂xl

d

dt

(
∂x̂l

∂ξ i

)
= ∂η̂m

∂xl

∂ul

∂ηq

∂η̂q

∂ξ i

= ∂η̂m

∂xl

∂

∂ηq

(
∂x̂l

∂ηp
up

)
∂η̂q

∂ξ i

= ∂η̂m

∂xl

∂2x̂l

∂ηq∂ηp

∂η̂q

∂ξ i
up +

∂η̂m

∂xl

∂x̂l

∂ηp

∂up

∂ηp

∂η̂q

∂ξ i

= �m
qpup ∂ηq

∂ξ i
+

∂um

∂ηq

∂η̂q

∂ξ i

=
(

�m
qpup +

∂um

∂ηq

)
∂ηq

∂ξ i
. (B.7)

Using (B.6) and (B.7) we can write (B.1) as

d

dt

(
∂η̂m

∂ξi

)
=

(
−∂Um

∂ηq
+

∂um

∂ηq

)
∂ηq

∂ξ i
, (B.8)

which coincides with (4.3).
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